Massy, France

Claire ROCHE

Site: claireroche.github.io GitHub: claireroche LinkedIn: claire-roche

Work Experience

Meshing Software Engineer

Oct. 2024 - Now Châtillon, France

Siemens DISW

• Development in the volume mesher of STAR-CCM+.

- Work with an **international** team.
- STAR-CCM+, C++ Programming, Git.

PhD

Oct. 2021 - Oct. 2024

Bruyères-le-Châtel, France

Lihpe (Paris-Saclay University, CEA) & CEA-CESTA

- Development of an advancing front algorithm for linear hexahedral block structure generation around a vehicle, dedicated to flow simulation around the vehicle, with particular care to the boundary layer structure.
- A posteriori block curving using Bézier elements to approximate the vehicle's surface and discretization of the curved blocks with special refinement in the boundary layer.
- Application to numerical simulations using different dedicated CFD codes.
- C++ Programming, Paraview, SU2 CFD, Git.
- https://github.com/LIHPC-Computational-Geometry/gmds

Supervisors: Franck LEDOUX, Jérôme BREIL, Thierry HOCQUELLET

Internship

May 2023 - Aug. 2023

Livermore, CA, United States

Lawrence Livermore National Laboratory

- High-order mesh rp-adaptivity for multi-material interface alignment in MFEM.
- C++ Programming, Git.
- https://github.com/mfem/mfem

Supervisor: Ketan MITTAL

Internship CEA-CESTA Feb. 2021 - Aug. 2021

Le Barp, France

- Implementation of methods for refinement, regularization, and adaptation of structured meshes in the boundary layer.
- Application to simulations of hypersonic flows using a stationary/unsteady 3D Navier-Stokes CFD code.
- Fortran 90 Programming, Open MP, Paraview, Visit.

Supervisors: Marina OLAZABAL-LOUME, and Jérôme BREIL

EDUCATION

PhD in Applied Mathematics & Computer Science

2021 - 2024

LiHPC (Paris-Saclay University, CEA), France

Title: Hexahedral Curved Block-Structured Mesh Generation for Atmospheric Re-Entry.

Engineering Degree in Applied Mathematics & Mechanics

2018 - 2021

ENSEIRB-MATMECA, Bordeaux INP, France

Master Degree in Numerical Methods for High Performance Computing

2019 - 2021

Bordeaux University, France

Bordeaux University, France

PUBLICATIONS

Roche C. Hexahedral curved block-structured mesh generation for atmospheric re-entry. Diss. Université Paris-Saclay, 2024.

https://theses.hal.science/tel-04831511/

Mittal K, Dobrev V.A., Knupp P, Kolev T, Roche C, Tomov V.Z. Mixed-Order Meshing using rp-adaptivity for Surface Alignment with Implicit Geometries. International Meshing Roundtable 2024 (SIAM IMR24). https://internationalmeshingroundtable.com/assets/papers/2024/1004.pdf

Roche C, Breil J, Hocquellet T, Ledoux F. Block-structured quad meshing for supersonic flow simulations. *International Meshing Roundtable 2023 (SIAM IMR23)*.

https://internationalmeshingroundtable.com/assets/papers/2023/11-Roche-compressed.pdf

Roche C, Breil J, Olazabal-Loumé M. Mesh regularization of ablating hypersonic vehicles. In 8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2022). Jun 2022, Oslo, Norway.

https://hal-cea.archives-ouvertes.fr/cea-03783795/

COMMUNICATIONS

Apr. 3 - 5, 2024

Avrainville, France

"Génération de maillages hexaédriques 3D pour la rentrée atmosphérique". Journées Des Doctorants de la DAM.

Mar. 5 - 8, 2024

Baltimore, MD, United States

"Curved Hexahedral Block Structure Generation by Advancing Front". SIAM International Meshing Roundtable Workshop (SIAM IMR24).

https://internationalmeshingroundtable.com/assets/research-notes/imr32/2010.pdf

Mar. 29 - 31, 2023 Bordeaux, France

"Advancing-front block structure generation for atmospheric re-entry simulations". 57th 3AF International Conference on Applied Aerodynamics, High-speed aerodynamics, from transonic to hypersonic.

Mar. 6 - 9, 2023

Amsterdam, The Netherlands

"Block-structured quad meshing for supersonic flow simulations". SIAM International Meshing Roundtable Workshop (SIAM IMR23).

Dec. 8, 2022

Poster. "Block-structured 2D mesh generation for supersonic flow simulation". Scientific evaluation of the CEA in high-performance computing.

Nov. 16, 2022 Bordeaux, France

Poster. "Automatic 2D curved block-structured mesh generation for atmospheric re-entry". Scientific evaluation of the CEA in atmospheric re-entry.

Jun. 5 - 9, 2022 Oslo. Norway

8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2022).

May 10, 2022

Arcachon, France

Poster. "Automatic hexahedral mesh generation for atmospheric re-entry". Journée des doctorants.

Project

Mesh adaptation in PETSc

Oct. 2020 - Jan. 2021

Master's Project

- Replacing Pragmatic remesher by MMG in PETSc.
- $\bullet\,$ Setting up test cases for the implementation.

SKILLS

Programming C++, Fortran 90, Python, Git, I₄TEX, TikZ, MarkDown

Softwares STAR-CCM+, CLion, gmsh, Paraview, Visit, SU2 CFD

Communication French (native), English (B2 - TOEIC: 870), Spanish (beginner)

Other Mesh Generation, Computational Fluid Dynamics